

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Ospedaliero - Universitaria di Bologna

2nd generation TKIs in CML

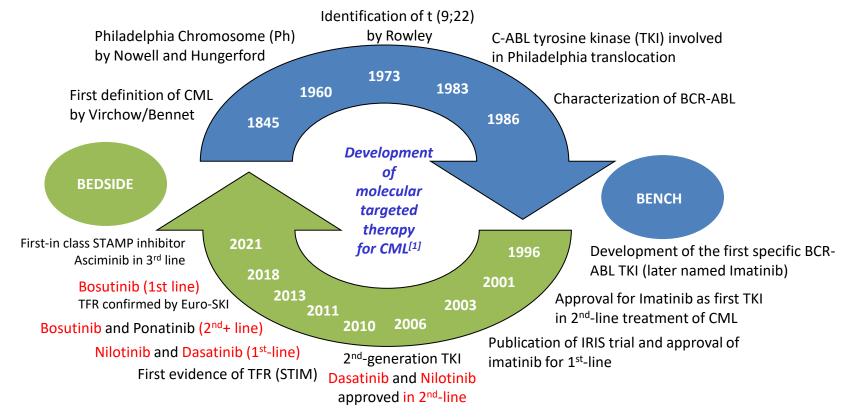
Prof. Dr. med. Tim H Brümmendorf Center for Integrated Oncology Aachen-Bonn-Köln-Düsseldorf (CIO^{ABCD})

University Hospital Aachen, Germany

President: Pier Luigi Zinzani Co-President: Michele Cavo

Bologna, Royal Hotel Carlton January 15-17, 2024

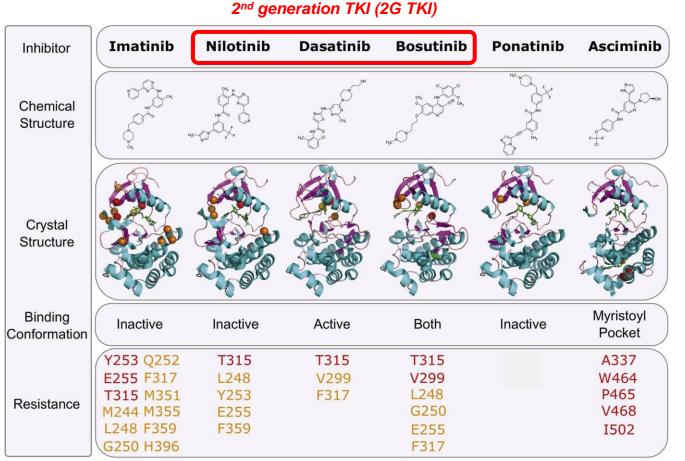
BOLOGNA BOLOGNA, ROYAL HOTEL CARLTON


New Drugs in Hematology

Disclosures of Tim H. Brümmendorf

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Pfizer	x		x			x	
Novartis	x		x			x	
Gilead			x				
Ariad							x
Roche							x
Merck							x
RepeatDx	x						

Chronic Myeloid Leukemia (CML): A Model Disease in Oncology


Continously updated from: Balabanov S. et al. *Drug Discov Today Technol*. 2014;11:89 2nd generation TKI's indicated in red

Centrum für Integrierte Onkologie Aachen Bonn Köln Düsseldorf

Structure, MoA and activity of approved BCR-ABL TKIs

Centrum für Integrierte Onkologie – CIO Aachen

Braun et al. **Cancer Cell** 2020; 37: 530-42

Challenges in the Treatment of CML in 2024

Background:

• Most patients with newly diagnosed CML are assumed to have a normal life expectancy

Challenges:

- Offering the perspective of a **treatment-free remission** (cure?) to as many patients as possible
- Prevention of and (in case it happens) improved treatment of:
 - Disease progression to AP/BC and
 - Development of resistance to TKI
- Improvement of tolerability and adherence to TKI
- Eradication of leukemic stem cells as a continued source of relapse/disease progression

Do 2nd generation TKIs improve treatment of CML over Imatinib ?

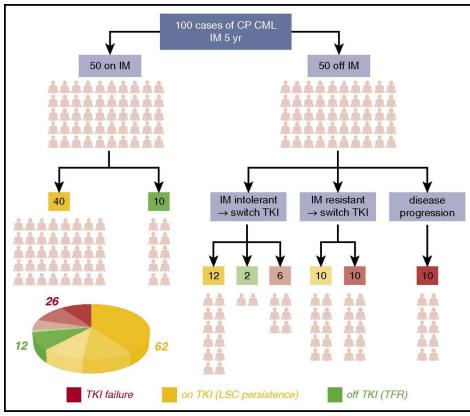
Challenges in the Treatment of CML in 2024

Background:

• Most patients with newly diagnosed CML are assumed to have a normal life expectancy

Challenges:

- Offering the perspective of a treatment-free remission (cure?) to as many patients as possible
- Prevention of and (in case it happens) improved treatment of:
 - Disease progression to AP/BC and
 - Development of resistance to TKI
- Improvement of tolerability and adherence to TKI
- Eradication of leukemic stem cells as a continued source of relapse/disease progression


Do 2nd generation TKIs improve treatment of CML over Imatinib ? If so, how to decide when to apply them and which one to choose ?

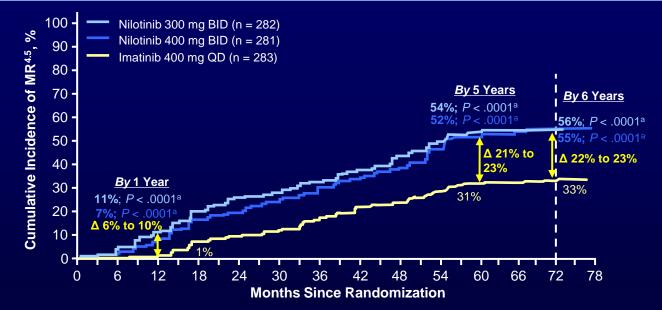
Treatment-free Remission (TFR) in CML First Line

TFR rates achieved with Imatinib in CP CML in First Line

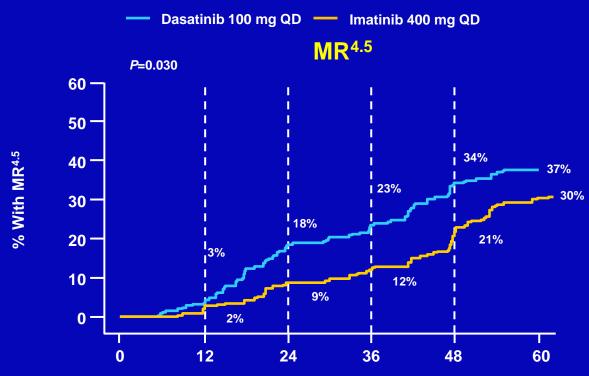
TFR rate (on the basis of 5 years from start of treatment !):

Imatinib first line (accord. to Vetrie und Holyoake (2017 !):

12 %


Holyoake. Blood. 2017;129:1595.

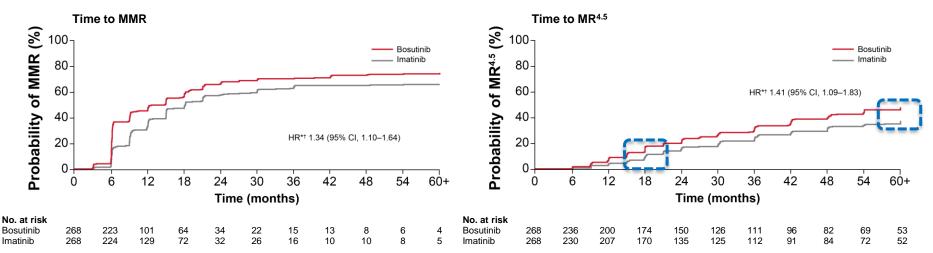
Can We Improve the Number of Patients Achieving TFR by Using 2nd Generation TKIs in First Line and/or by longer pretreatment period (duration of deep response)?


Cumulative Incidence of MR^{4.5} and Time to First MR^{4.5}

Treatment Arm	Kaplan-Meier Estimated Median Time to First MR ^{4.5} , months	Hazard Ratio vs Imatinib (95% Confidence Interval)	<i>P</i> value ^a
Nilotinib 300 mg BID	45.5	2.0387 (1.5807-2.6295)	< .0001
Nilotinib 400 mg BID	49.8	1.7770 (1.3780-2.2915)	< .0001
Imatinib 400 mg QD	61.1	_	—

^a P values are nominal, were provided for descriptive purposes only, and were not adjusted for multiple comparisons.

Cumulative Rate of MR^{4.5}



MR^{4.5} = BCR-ABL (IS) ≤0.0032%; IS = International Scale.

Months

Molecular Response

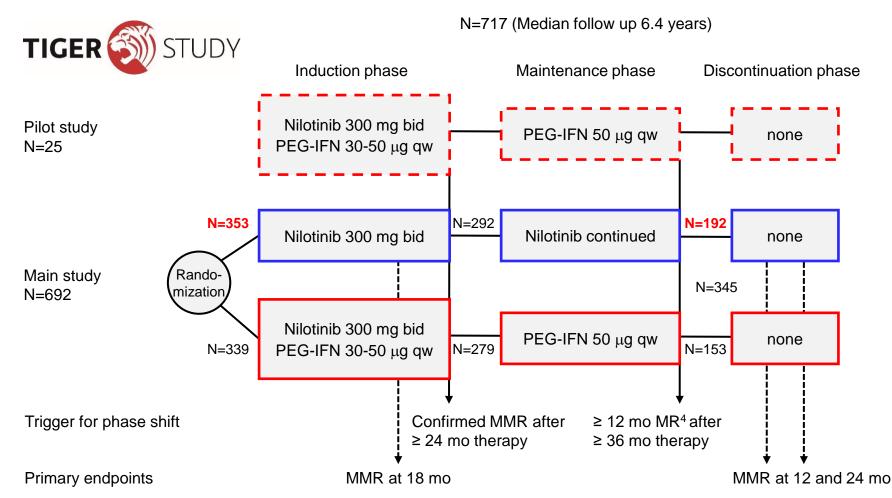
Cumulative response rates by 60 months, % (95% CI)*	Bosutinib n=268	Imatinib n=268	OR (95% CI)
MMR	73.9 (68.6–79.1)	64.6 (58.8–70.3)	1.57 (1.08–2.28)
MR ⁴	58.2 (52.3–64.1)	48.1 (42.2–54.1)	1.50 (1.07–2.12)
MR ^{4.5}	47.4 (41.4–53.4)	36.6 (30.8–42.3)	1.57 (1.11–2.22)

* Adjusted for Sokal risk group and region as determined at the time of randomization.

† From a proportional subdistributional hazards model adjusted for competing risk of treatment discontinuation without a response.

Ratios with 95% CIs excluding 1 are predictive (no adjustment for multiple comparisons). MMR: BCR-ABL1 IS ≤0.1%. MR⁴: BCR-ABL1 IS ≤0.01%. MR^{4.5}: BCR-ABL1 IS ≤0.0032%.

Deep molecular response of 1st vs. 2nd generation TKI

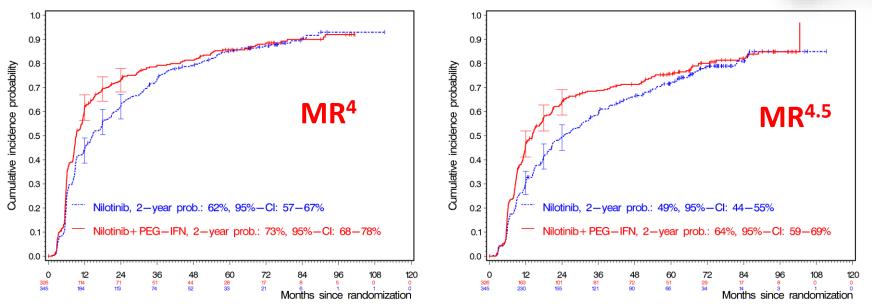


Centrum für Integrierte Onkologie – CIO Aachen

(CAVE ! Cross-trial comparison !)

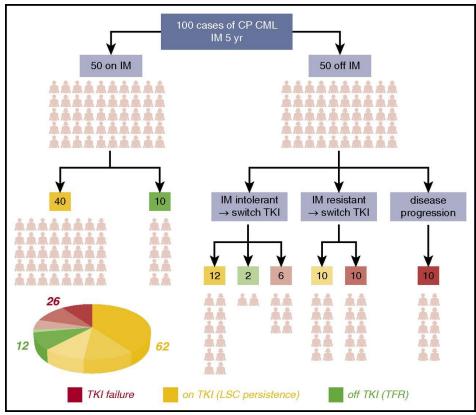
		@5 years						3 mon	ths
	MMR			MR ^{4.5}			EMR (≤10%)		10%)
	2 nd gen	IM	<u>∆MMR</u>	2 nd gen	IM	<u>∆MR^{4.5}</u>	2 nd gen	IM	<u>∆EMR</u>
DAS vs IM	76%	64%	12%	42%	33%	9%	84%	64%	<i>ы</i> 20%
NIL vs IM	77%	60%	17%	54%	31%	23%	91%	67%	á 24%
BOS vs IM	74%	65%	9%	47%	37%	10%	75%	57%	á 18%

Hochhaus et al. ENESTnd. LEUKEMIA 2016 Cortes et al. DASISION. JCO 2016 Brümmendorf et al. BFORE. LEUKEMIA 2022



modified from: Hochhaus A. et al., ASH 2023: #446: Treatment Free Remission after Nilotinib Plus Peg-Interferon Alpha Induction and Peg-Interferon Alpha Maintenance Therapy for Newly Diagnosed Chronic Myeloid Leukemia Patients; The Tiger Trial

Cumulative incidences of DMR



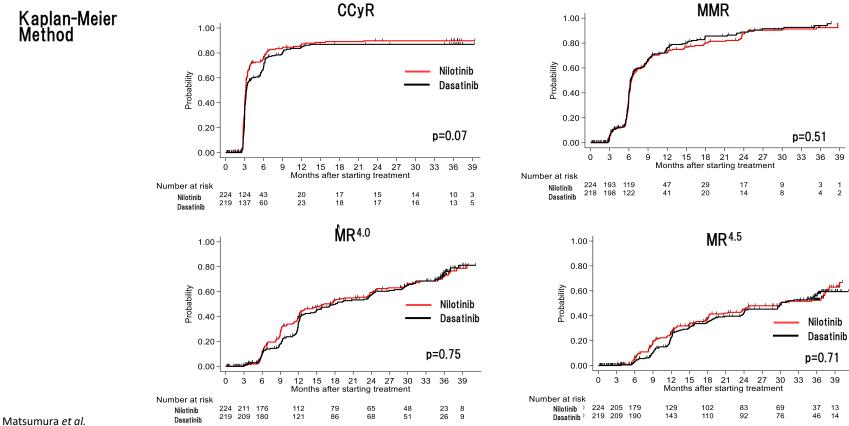
192/353 patients i.e. **54.3** % of all patients included in the Nilotinib monotherapy arm could discontinue treatment of which TFR* was successfully achieved in **53%** *discontinuation criteria: minimum of 3 years of therapy and a minimum of 1 year in MR⁴

modified from: Hochhaus A. et al., ASH 2023: #446: Treatment Free Remission after Nilotinib Plus Peg-Interferon Alpha Induction and Peg-Interferon Alpha Maintenance Therapy for Newly Diagnosed Chronic Myeloid Leukemia Patients; The Tiger Trial

TFR rates achieved with Imatinib or Nilotinib in CP CML in First Line

TFR rate (on the basis of 5 years from start of treatment !):

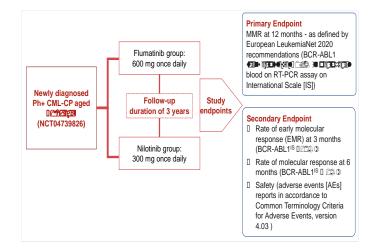
Imatinib first line (accord. to Vetrie und Holyoake (2017 !):


12 %

TFR rate (>3 years of treatment and >1 year of MR⁴):

Nilotinib first line (accord. to Hochhaus et al. TIGER-Study (2023 !):

29 %


Times to Cytogenetic and Molecular Responses (Per-protocol population Japanese study)

ASH 2020

Flumatinib Versus Nilotinib for Newly Diagnosed CP CML

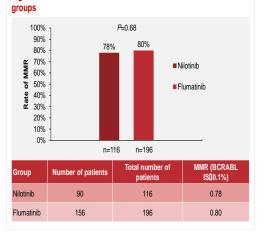


Figure 1: Rate of MMR at 12 months in nilotinib and flumatinib

Figure 1: Forest plot showing the risk difference of adverse events between Flumatinib and Nilotinib

		isk Difference nib-Flumatinib
Hematologic abnormality		
Thrombocytopenia	3.76	
Anemia	8.53	
White blood cell decreased	3.57	
Laboratory abnormality		<u>}</u>
Hyperbilirubinemia	39.23	
ALT elevation	20.5	
AST elevation	14.54	
Hypertriglyceridemia	3.92	
High cholesterol	4.31	⊢ ∎(
Creatinine increased	-3.4	HEH
Non-Hematologic AEs		
Rash	12.43	H
Hyperhidrosis	-0.14	⊢
Dyspepsia	3.78	
Diarrhea	-6.12	⊢ ∎1
Abdominal pain	-1.49	⊢_ ∎ <mark></mark>
Abdominal distension	5.55	⊢ ∎−−1
Arthralgia	5.14	
Headache	4.49	
Eye pain	3.28	⊢_ ∎1
Alopecia	3.81	⊢
Dry mouth	2.86	⊢ _ ∎1
AE of special interest		
QT corrected intervel prolonged	0.33	Here
		-15 -10 -5 0 5 10 15 20 25 30

Treatment of CML in 2^{nd+} line following Imatinib

Nilotinib in CML-CP Response in Patients With a Minimum Follow-Up of 24 Months (N = 321)

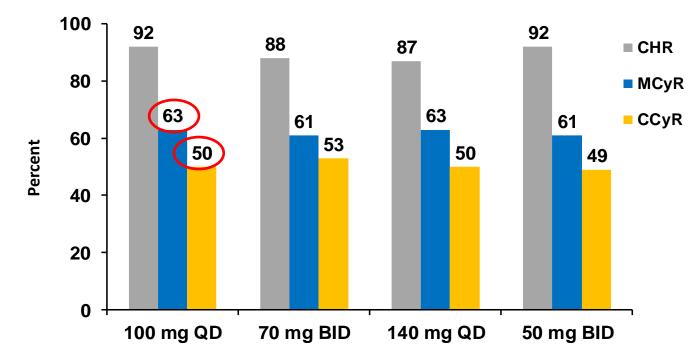
95% 90 78% 80 % Patients 70 65% 59% 60 56% 51% 50 44% 41% 40 30 20 10 0 207 95 321 321 226 321 226 95 No Overall* Overall Imatinib Imatinib Overall Imatinib Imatinib Baseline Resistant Intolerant Resistant Intolerant CHR[†] w/ Resistance[‡] w/ Resistance **MCvR CCvR** CHR

CCyR, complete cytogenetic response; CHR, complete hematologic response; MCyR, major cytogenetic response.

* Patients who achieved (without baseline CHR) or maintained CHR (had CHR at study entry).

+ Patients with no CHR at baseline.

100 -


‡ See definition of imatinib-intolerant with resistance in the Methods sections.

The overall rate of major molecular response (MMR) at 24 months was 38% for all patients with ٠ post-baseline PCR data available and baseline CHR (n = 105)

> 24 months update: Kantarijan et al. Blood. 2009;114:464. Abstract #1129 (6 months data published in: Kantarjian et al. Blood 2007;110: 3540-3546)

Dasatinib 100 mg QD in CP-CML (034): 4-year follow-up *Best overall response*

^aCHR and CyR were last assessed at 24 months (per protocol) Patients with Ph(–) BCR-ABL(+) disease (n=14) are excluded from CyR rates

> presented at ASCO 2010 Shah NP, et al.: **Haematologica.** 2010 Feb; 95(2): 232–240.

Bosutinib in 2nd line treatment following Imatinib Study 200: Efficacy summary (median follow-up of 54.8 months)

Table 2. Efficacy outcomes at two and five years.

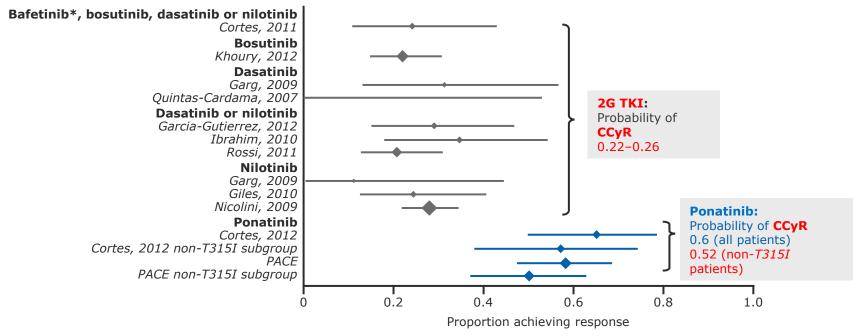
Parameter		l-R 195)		N-I =89)	Total (n=284)	
	Year 2	Year 5	Year 2	Year 5	Year 2	Year 5
Response,*† n. of evaluable patients (%) [95% CIs]						
Cumulative MCyR	102/182 (56)	107/182 (59)	49/80 (61)	49/80 (61)	151/262 (58)	156/2(2 (60)
	[48.5 - 63.4]	[51.3-66.0]	[49.7-71.9]	[49.7-71.9]	[51.4 - 63.7]	[53.3-65.5]
Cumulative CCyR	79/182 (43)	88/182 (48)	41/80 (51)	42/80 (53)	120/262 (46)	130/202 (50)
	[36.1-50.9]	[40.9-55.9]	[39.8-62.6]	[41.0-63.8]	[39.7-52.0]	[43.4-55.8]
Cumulative MMR	42/127 (33)	57/127 (45)	20/70 (29)	25/70 (36)	62/197 (31)	82/19((42)
	[25.0-42.0]	[36.1-54.0]	[18.4-40.6]	[24.6-48.1]	[25.1-38.5]	[34.7-48.8]

Centrum für Integrierte

Onkologie – CIO Aachen

CI, confidence interval; CML, chronic myeloid leukemia; CCyR, complete cytogenetic response; IM-I, imatinib intolerant, IM-R; imatinib resistant; KM, Kaplan–Meier; MCyR, major cytogenetic response; PD, progressive disease

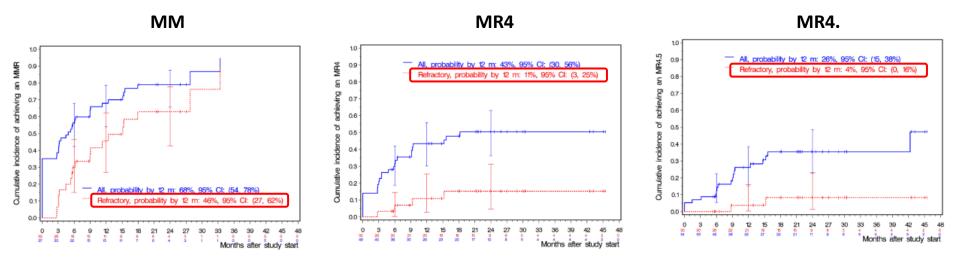
Gambacorti-Passerini C et al. Haematologica 2018;103:1298–1307



Treatment of CML in 2nd line following 2nd generation TKI

Comparing the effectiveness of sequential 2G TKI use versus switch to ponatinib after 2G TKI failure

Proportion of CP-CML patients who achieve a CCyR (after failure of \geq 1 2G TKI and \geq 2 prior TKI therapies):



The size of the diamonds in the figure represents the number of patients; the length of the lines shows the 95% confidence intervals.

*Bafetinib is not approved for the treatment of patients with CML; treatment only in the context of clinical studies.

2G, second generation; CCyR, complete cytogenetic response; CP-CML, chronic phase, chronic myeloid leukaemia; TKI, tyrosine kinase inhibitor. Lipton JH, et al. *Leuk Res.* 2015;39:58–64.

Bosutinib run-in dosing following 2nd generation TKI failure: The German CML-7 (BODO) trial: *Efficacy*

- Probability of MMR after 24 months of therapy was 79% (95% CI: 65.8% to 87.5%)
 - 6 out of 7 previously intolerant patients achieved MMR or better
 - 30 refractory patients (19 refractory; 11 refractory <u>and</u> intolerant) without baseline MMR:
 → 19 (53%) patients achieved MMR or better (2 patients with MR4.5; 2 with MR4 and 15 MMR)

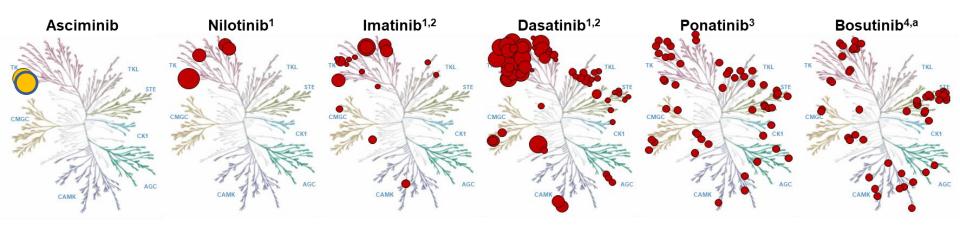
Isfort et al. Ann Hematol 102:2741-52 (2023)

Tolerability of TKIs:

- spectrum of organs affected

- on vs. off target effects

- confounding factors


- dose-dependency
 - reversability
 - kinetics

Role of Comorbidities:

... and the Patient's Perspective:

Selectivity of BCR::ABL-Inhibitors

Selectivity of kinase inhibitors:

Kinases bound by ATP-competitive TKIs are indicated by **red** circles. Kinases bound by STAMP inhibitor are indicated by a yellow circles.

^a Bosutinib inhibits additional kinases that are not depicted in the dendrogram. ATP, adenosine triphosphate; TKI, tyrosine kinase inhibitor; STAMP, Specifically Targeting the ABL Myristoyl Pocket. 1. Steegmann JL, et al. Leuk Lymphoma. 2012;53:2351-2361.

2. Karaman MW, et al. Nat Biotechnol. 2008;26:127-132.

3. Lang JD, et al. Clin Cancer Res. 2018;24:1932-1943.

4. Remsing Rix LL, et al. Leukemia. 2009;23:447-485.

Side effects of TKIs approved for treatment of CML

	Imatinib		Dasatinib		Nilotinib		Bosutinib		Ponatinib	
	All grades	Grade 3/4								
Fatigue	++++	+	+++	+	+++++		NR	NR	++++	++
Rash	++++	++	+++	+	++++	-	++++	++	++++	++
Headache	+++	-	++++	-	++++	-	++++	++	++++	++
Myalgia and arthralgia	+++++	-	++++	-	NR	NR	++	-	++++	++
Bone pain	+++	++	NR	NR	NR	NR	++	-	NR	NR
Diarrhoea	++++	++	++++	+	+++	+	+++++	++++	NR	NR
Nausea	++++	-	++++	-	+++	+	++++	++	++++	+
Vomiting	+++	-	+++	-	++	-	++++	++	NR	NR
Abdominal pain	++	-	NR	NR	NR	NR	++++	++	++++	+++
Pancreatitis	+	+	NR	NR	++	++	NR	NR	+++	+++
Bleeding events (GI, CNS)	+	+	++	++	++	+	NR	NR	NR	NR
Oedema	++++	++	++++	++	+++	-	+++	++	NR	NR
Pleural effusion	++	+	++++	++	++	+	NR	NR	NR	NR
PAH	NR	NR	+	+	NR	NR	NR	NR	NR	NR
QT prolongation	+	NK	++	NK	++	NK	NR	NR	NR	NR
Hypertension	NR	NR	NR	NR	NR	NR	NR	NR	+++	++
PAOD	-	-	NR	NR	++	++	NR	NR	++++	++++
Elevated lipase	++++	+++	NG	-	++++	+++	++++	+++	++++	++++
Elevated ALT	++++	++	NG	+	+++++	+++	+++++	++++	++++	++
low phosphate	+++++	+++++	NG	+++	++++	+++	++++	++	NR	NR
Raised glucose				-	++++	+++		-	NR	NR
Anaemia	+++++	+++	+++++	++++	++++	++	*****	+++	+++	+++
Neutropenia	+++++	++++	+++++	++++	++++	+++	++++	++++	++++	++++
Thrombocytopenia	+++++	++++	+++++	++++	++++	+++	*****	++++	++++	++++
Aon platelet fonction	*****	NK	*****	NK			****	NK	Nĸ	TNR
LGL expansion	NR	NR	++++	NK	NR	NR	NR	NR	NR	NR

Centrum für Integrierte Onkologie – CIO Aachen

Hematological side effects:

Non-hematological side effects:

effects

reviewed in:

Mostly assumed to be due to off-target

Mix of on-target-effect (BCR-ABL, early) and off-target effects (c-kit, PDGFR a.o., chronic)

Apperley JF. Lancet 2015, 385 (9976), 1447-59

Data derived from studies of first line use with the exception of ponatinib (so far used only as second or subsequent line) and rare events such as PAH, PAOD, and abnormal platelet function.^{724,754,754,754,754},^{754,754</sub>,^{754,754},^{754,754},^{754,754</sub>,^{754,754},^{754,754</sub>,^{754,754},^{754,754},^{754,754</sub>,^{754,754},^{754,754</sub>,^{754,754},^{754,754</sub>,^{755,754},^{755,754},^{755,754</sub>,^{755,754},^{755,754</sub>,^{755,754},^{755,756},^{755,756},^{755,756</sub>,^{755,756},^{755,756},⁷⁵⁵}}}}}}}}}

Table 4: Most frequently reported side-effects of tyrosine-kinase inhibitors

TKI intolerance is a common reason for discontinuing CML therapy

- Although AEs may be adequately managed by dose reductions/interruptions in TKI trials, many patients discontinue therapy due to intolerance¹⁻¹⁰
- Real-world data has shown that more than 1 in 5 patients discontinue TKI due to intolerance, with similar rates observed with imatinib and 2nd-generation TKIs¹¹

Trial	Follow-up	ткі	Discontinuation	Discontinuation due to AEs	Discontinuation due to disease progression
1L					
IRIS ¹	5 years	Imatinib	28%	4%	NR
ENESTnd ^{2,a}	5 years	Nilotinib	31.6%-37.0%	12.1%-19.9%	0.7%-1.4%
DASISION ³	5 years	Dasatinib	100/259 (39%)	21% ^b	11%
BELA ⁴	2 years	Bosutinib	37%	24%	4%
BFORE⁵	12 months	Bosutinib	22%	13.8%	0.4%
2L					
2101 ⁶	48 months	Nilotinib	69.8%	20.6%	29.9%
CA180-034 ^{7,c}	7 years	Dasatinib	78%-85% ^d	24%-31%	16%-26%
Study 2008	9 years	Bosutinib	86%	26%	19%
BYOND ⁹	25.9 months	Bosutinib	15/46 (32.6%)	10/46 (21.7%)	0
≥3L or T315I					
Study 2008	8 years	Bosutinib	93%	30%	21%
PACE ^{10,e}	5 years	Ponatinib	NA ^f	21%	11%
BYOND ⁹	24.2 months	Bosutinib	28/61 (45.9%)	16/61 (26.2%)	0

Cross-trial comparisons are not appropriate. Comparisons of treatments should be made only based on direct head-to-head clinical trials.

1. Druker BJ, et al. N Engl JMed. 2006;355:2408-2417. 2. Hochhaus A, et al. Leukemia. 2016;30:1044-1054. 3. Cortes JE, et al. J Clin Oncol. 2016;34:2333-2340. 4. Brümmendorf TH, et al. British Journal of Heananology. 2015;168:69-61. 5. Cortes JE, et al. J Clin Oncol. 2016;36:231-237. 6. Glies FJ, et al. Leukemia. 2016;21:0127:107-112. 7. Shah NP, et al. Am J Hematol 2016;91:861-874. 8. Cortes JE, et al. J Clin Oncol. 2016;36:231-237. 6. Glies FJ, et al. Leukemia. 2016;21:231-231. 1. Glies Glies FJ, et al. J Clin Oncol. 2016;31:231-2340. 4. Brümmendorf TH, et al. Breanted at EHA25 Wrutu, 2020. Abstent EPF66. 9. Hochwains. 2003;47:1275:231. 7. D. Cortes JE, et al. Blocksmia. 2017;42:1275:2137. 10. Cortes JE, et al. Blocksmia. 2017;42:142-1489

AE, adverse event; CML, chronic myeloid leukemia; TKI, tyrosine kinase inhibitor.

^a Discontinuation due to AEs/abnormal laboratory values for nilotinib 300 mg twice daily and 400 mg twice daily doses. ^b Includes patients who discontinued due to intolerance and AEs unrelated to study drug. ^c Discontinuations due to drug-related AEs. ⁴Most patients discontinued due to 'Other', as they moved off study and no to commercial desatinib. ^a Included patients that received ponatinib in 23L or had a T315I mutation. ¹The study was closed at the time of data analysis and therefore total discontinuation rearry trevented.

New Drugs in Hematology

By direct comparison *in first line*, 2nd generation TKIs compared to Imatinib

Do consistently lead to:

- Higher and earlier cumulative rates of EMR, MMR, MR4 and MR4.5
- Lower failure rates due to inefficacy
- Different (and narrower) spectrum of resistance-conferring BCR::ABL mutations
- Higher frequency of patients to become eligible for TFR (earlier)

but so far fail to achieve:

- Improved survival
- Neither improved tolerability (neither short-/long-term, low grade chronic nor acute tox.) nor adherence
- Favourable relapse rates following TFR compared to Imatinib (?!)

New Drugs in Hematology

Take-home and discussion points:

Each 2nd generation TKI for CML has a **unique non-hematological side effect spectrum** regarding

- Organ system predominanty affected
- Kinetics, reversibility and dose-dependency
- confounding factors (e.g. BMI, co-medications ...)

Given that existing 2nd generation TKIs seem equieffective <u>in 1st line</u> and 2nd line treatment <u>post Imatinib</u>, the choice of the individual compound can be based mostly on

- side effect profile of the TKI as well as
- the patients' **comorbidities** and expected **adherence**
- **emergent mutations** (applies to 2^{nd+} line only)

2^{nd+} line therapy <u>post 2nd generation TKIs</u> requires **careful weighing of reasons** including:

 resistance vs. intolerance, mutational spectrum, available allo SCT options, comorbidities, treatment line and patient preference before decision between 2nd vs. 3rd gen TKI is made

Expect to change once Asciminib being approved in earlier treatment lines (-> ASC4START/-FIRST)

Thanks particularly to the Uniklinik Aachen CML/MPN group:

- Steffen Koschmieder
- Mirle Schemionek
- Martina Crysandt
- Christian Hasenbank
- Susanne Isfort
- Anna Doleschal

<u>contact</u>: tbruemmendorf@ukaachen.de

In direct comparison *in first line*, 2nd generation TKIs compared to Imatinib

Do consistently lead to:

- Higher cumulative rates of EMR, MMR, MR4 and MR4.5
- Earlier responses
- Higher frequency of patients to become eligible for TFR approaches (earlier)
- Lower failure rates due to inefficacy
- Different spectrum of resistance conferring BCR::ABL mutations

Fail to achieve:

- Higher frequency of TFR eligible patients actually staying in sustained TFR (?)
- Improved adherence
- Improved tolerability (neither short-term, long-term, low grade chronic nor acute tox.)
- Improved survival
- Better adherence

Why use 2nd generation TKIs in 1st line ?

Take-home and discussion points:

- Each 2nd generation TKI for CML has a unique spectrum of
 - Organ system predominance
 - Kinetics and reversibility
 - confounding effects for and
 - dose-dependency of non-hematological side effects
- Choice of 2nd generation TKIs in 1st line and 2nd line treatment <u>post Imatinib</u> can be based mostly on
 - emergent mutations
 - side effect profile of the TKI as well as
 - the patients' **comorbidities** and expected **adherence**
- 2nd line therapy <u>post 2nd generation TKIs (</u>!) requires careful weighing of reasons including:
 - resistance vs. intolerance, mutational spectrum, available allo SCT options, comorbidities, patient preference before decision between 2nd vs. 3rd gen TKI is made,
- Expect to change once Asciminib being approved in earlier treatment lines (-> ASC4START/-FIRST)